

Bozeman, MT: Seattle, WA: Portland, OR: Rescue, CA: Tokyo, JP: Brisbane, AU: Mobile, AL Ulm, Germany: Manchester, UK: Waterloo, ON, CA: Stockholm, Sweden: Italy

TLS over CAN bus

Cloud Services connectivity

Body Controllers

Brake Controllers FIPS for Military Grade Vehicles

Automotive Gateways

OBD-II

We Secure Automotive by Securing Data

Replacement part verification

Key Fobs

Apps for Entry

Transmission controllers

Automotive Gateways

Lidar/Radar

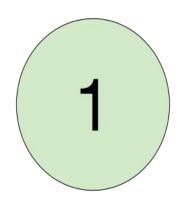
Telematics ECU's

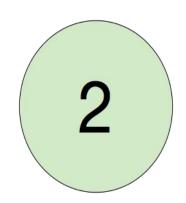
ECU Secure Boot Firmware updates

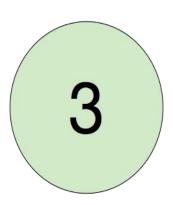
Exciting Company Growth

2,000+ OEM Customers

2+ BILLION secure connections!

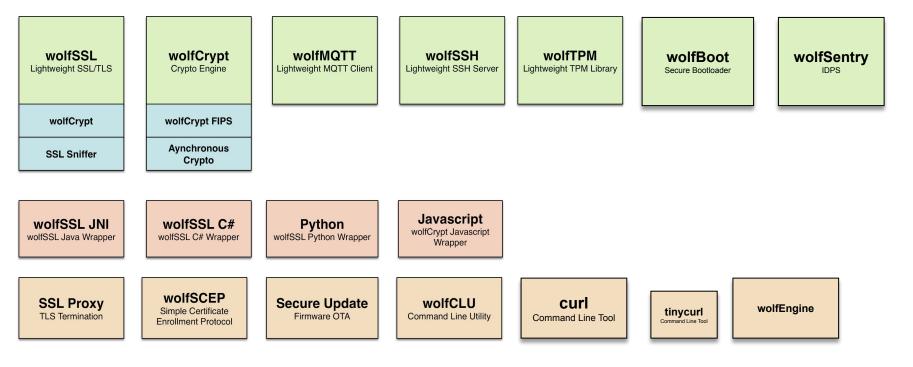

15 years Securing Automotive Designs


Three Main Areas of Focus


Data in **Transit**

Data at **Rest**

Firmware Updates



- Secured with SSL/TLS, SSH
- Possible Transfer Mediums: TCP, UDP, Bluetooth, Serial, CAN,etc
- Secured with **Cryptography**
- Secured with SSL/TLS, crypto, MQTT
- Prevent malicious firmware flashing and updates

wolfSSL Products Used in Automotive

Products are ported to all of the most popular Automotive Operating Systems: QNX, Autosar, Integrity, VXWorks, FreeRTOS, Automotive Grade Linux, Bare Metal etc!!!

Automotive

- 15+ years experience
- Major customers in Japan, Germany, USA and France
- wolfSSL products are used by all top 10 automotive OEM's

ECUs

Telematics

Infotainment

Increased Complexity and Safety Requires Increased Security

Simple Old School:

Still cool.... but no auto break safety, no electronic fuel injections run by an ECU. Less attack vectors but less safety and functionality.

Current Vehicles:

Interconnected electronic parts, diagnostics, auto break engagement, many electronic safety enhancement functions. More attack vectors that need secured.

All Automotive (not just the luxury car)

- wolfSSL products used in military vehicles
- Agricultural and heavy equipment vehicles
- Heavy duty and light weight trucks from Semi trucks to small pickup trucks
- In both the vehicle and the back end servers that may be supporting vehicle operations

High throughput data verification for V2X.

Use Case

Leveraging DSP's to get the most out of the hardware

Difficulty of verifying the high volume data stream in a V2X environment

V2X environment gets a really high amount throughput -

over 16,000 verifications per sec

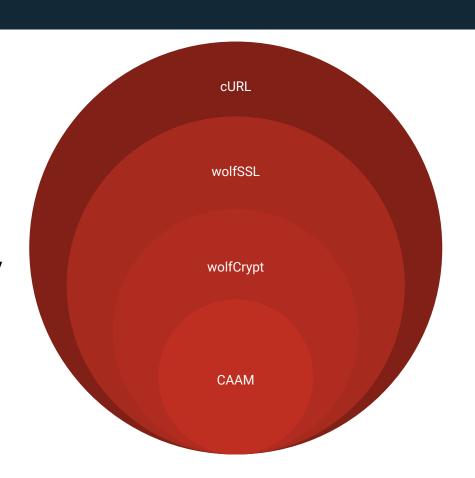
wolfSSL Products Used

- wolfCrypt used for signature verification
- Cryptographic Primitives running on a DSP as well as ARM core
- Dispatcher, custom built library for directing which cores a verification runs on and handling a high volume of verification requests
- SM2 public key support implemented for the Chinese Market, in addition to the existing Branpool and NIST implementations

Specific Engineering Detail

- Performance optimization of caching ECC information for points with repetitive use and sharing that cached information between cores was a challenge
- Investigation into use of hardware acceleration such as HVX on DSP
- Many benchmarks done to investigate trade off of number of threads for parallelism and the point where it negatively impacts performance
- Isolation of processing power to a single core with the help of a dispatcher library and verification of processor usage

Secure Firmware Update


Use Case

- Retrieving and authenticating a new firmware update
- Phone in to backend server with wolfSSL + cURL
- Heightened security using CAAM on i.MX device
- CAAM Driver supports both
 Hardware Encryption and
 Secure Key store on QNX

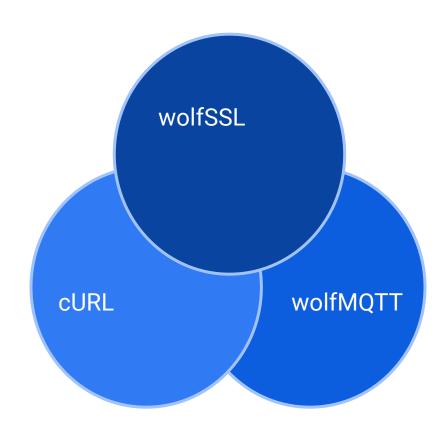
wolfSSL Products

- cURL
- wolfSSL
- wolfCrypt
 - Integrated with CAAM Driver for key storage retrieval

Specific Engineering Detail

- Leveraged i.MX6 device and vastly improved security by using the CAAM
- Uses black encrypted keys with ECC ephemeral keys during TLS connections
- Red Vs Black Blobs
- Running with QNX
- Performance of sign/verify with black encrypted keys is close to an optimized unencrypted operation

Algorithm		Software Only avg ms	QNX CAAM (black keys) avg ms	SP ASM avg ms
ECC [SECP256R1] 256 key gen		69.733	4.917	3.138
ECDHE [SECP256R1] 256 agree	69.27	5.68	7.095
ECDSA [SECP256R1] 256 sign	73.06	7.17	4.22
ECDSA [SECP256R1] 256 verify	50.84	9.29	7.655
ECC [SECP256R1] 256 encryption		69.47	5.935	7.275
ECC [SECP256R1] 256 decryption		69.54	5.955	7.285


TLS 1.3 to Connect Car to the Backend

Use Case

- Heavily Used MQTT, LibcURL
 - Used cURL for HTTP Proxy
- Complex Network Topologies to Communicate with the Backend

wolfSSL Products

- wolfSSL
- wolfMQTT
- cURL

Specific Engineering Detail

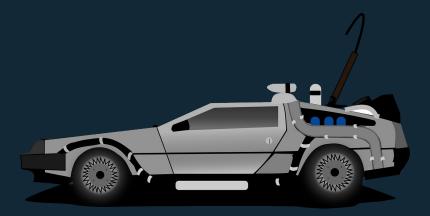
- Made use of MQTT v5
- Resolved issues due to multi threaded use cases with wolfMQTT and minor behavior fixes with wolfMQTT
- Support with integration and setup

ADAS/autonomous driving

Use Case

- Use for connection to map
- Updates navigation

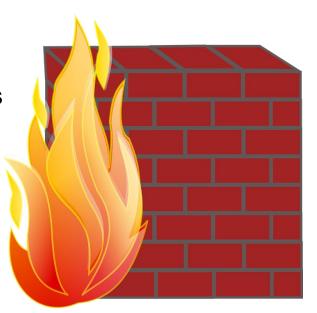
Aids a system used for an enhanced version of cruise control


wolfSSL Products

Specific Engineering Detail

- Porting to an ST Telemaco board with a7 core
- Made use of hardware crypto
- Some misra c work was done on specific files

NTP (network time protocol) for Autosar


Timestamping Events for smart cars

- Ecosystem Time Sync
 - Example: Brakes have the same time reference as machine vision systems!
 - Maintaining Constant sub millisec time in the vehicle
 - Cryptographically Secure Reference Time
- Critical but Simple Facility
- Why do we need NTP on a Car?
 - Sync of Subsystems in Smart Car Apps
 - Forensic Reconstruction of Events

How wolfSentry Fits Into Automotive

wolfSentry: Identify and Mitigate network intrusions

- wolfSentry
 - Firewall: Filtering Bus Traffic
 - IDS: Monitoring Bus Traffic to notify on Anomaly Detection
 - IDPS: Dynamically Respond to Block Bus Spam
 - Driver and manufacturer alerts through callbacks

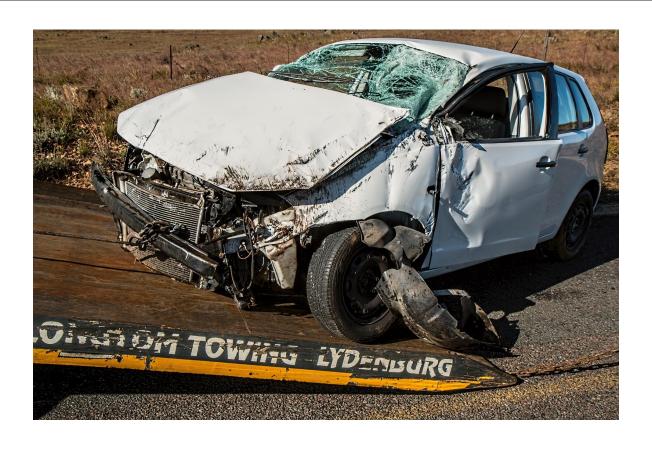
ISO 21434

- wolfSentry IDS
 - Designed for embedded devices
 - Dynamic rule generation, Transactional rule changes on-the-fly
 - Record and / or react to events
- wolfSSL
 - Secure transmission of event data
 - Secure general communications between microcontrollers / servers
- wolfBoot
 - Secure firmware updates

New: TLS Over CAN

TLS over CAN

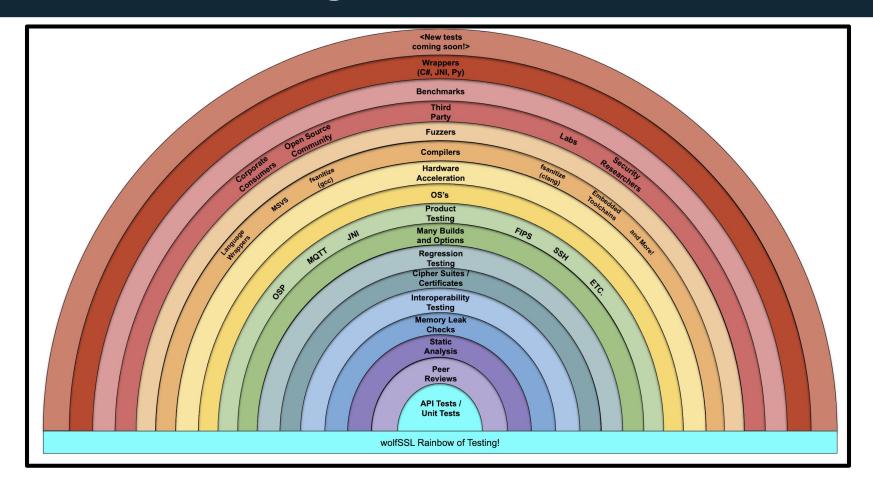
- CAN (controller area network)
- Authenticate, Encrypt, Integrity
- Use top industry standard for intra-car security



TLS over CAN - How to Implement in Practice

- wolfSSL ISO-TP wrapper with variable minimum packet delay
 - Allows the bus to be available for other packets
 - Eliminates the 8byte CAN max packet size
 - Adaptable for CAN FD
- TLS 1.3 for reduced round-trip handshakes
- Simple callback interface
 - Platform agnostic CAN bus wrapper

Testing


Testing In Order To Avoid Crashes

Testing and Code Quality

- Benchmark tests on real HW, multiple boards
 - Keeps track of code size vs Boot time
 - Measure memory resources
 - Manually run additional resource collection to update usage figures
- Functional tests running on real STM32F407 target in Amsterdam
 - Covers forward update, rollback
 - SPI flash tests
 - TPM test (using the Infineon TPM module)
 - Testing with combinations of possible DSA+SHA algorithms

Rainbow of Testing

Thanks!
Questions?

facts@wolfssl.com

www.wolfssl.com www.github.com/wolfssl

Bozeman, MT: Seattle, WA: Portland, OR: Rescue, CA: Tokyo, JP: Brisbane, AU: Mobile, AL: Stockholm, SE